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The end-loaded cantilever beam of perfectly plastic mabterial

has been studied in considerable detail but many cuestions remain unanswered,
As a first step in extension to plates, the concept is explored of an inter-
action curve relating limiting values of shearing force and bhending moment
for perfectly plastic beams, Simple illustrations demonsirate that, far more
than in the elastic range, such interaction is not just a lccal ratter but
depends upon the geometry and loading of the entire beam. Useful interaction

curves are obvained, nevertheless, with the aid of the upper and lower bound

techniques of limit analysis, choosing the gnaximum shearing stress criierion
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Introduction

A11 beams to be considered are assumed to be made of an idealized
material which is termed perfectly plastice. Perfectly plastic material is
elastic up to the yield point and then flows under constant stress, The
analysis of perfectly plastic beams in the plastic range is at present in
a very satisfactory sbate, Bending usually predominates so that the concept
of simple plastic hinges is sufficient in most cases. Should there be
axial force in addition, the extending or contracting hinge described by
Onat and Prager (l)* takes care of the situation. It might be expected
that shear force could be included in a similar manner. If shearing force,
V, and bending moment, M, alone are considered, it would seem a simple
matter to detemine whether or not the beam is fully plastic at the section,
In those problems where shear is important, an interaction curve relating
V and M for fully plastic action would be most desirable for beams of
rectangular cross-section, for I-bzsams and for each shape in common use.
Unfortunately such a curve does not really exist, even for any one shape,
because the geometry and loading of the entire beam are important, not the
properties of the section alone,

The rectangular beam only will be considered in what follows and
an attempt will be made to clarify the reasons for the lack of 2 unique
interaction curve, Studies of the cantilever beam under end load have been
made by Hoime (2), by Onat and Shield (3), by Green (L}, znd by Leth (5).
Much of the information to be presented here is contaiaed, therefore, in
this previous work but the relevent parts of each have not et been compared
in principie and some of the peculiarities of the resuits have not previously

been explained,

*Numbers in parentheses refer to the Bibliography at the end of the paper,
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A start will be made by the analysis of cantilever and simple
beams with constant shear force, The lower bound technique of limit
analysis (6) will be employed first to find a safe rnlation between V
and M and to provide reference values for thc subsequent work, A local
criterion will then be sought to relate limit values of V and M., The
impossibility of complete success with such an approach will be discussed.
The upper bound technique of limit analysis (6) will then be applied to
the simple span and comparison made with the lower bound and the locai
criterias The cantilever will also be studied and its peculiarities
noteds The influence of the loading and the geometry away from the
section should then become clearer, Finally by comparison of all the

results, a useful but by no means unique or exact interaction curve will

be proposeds

Lower Bounds for Beam of Rectangular Cross-Section

The lower bound theorem of limit znalysis deals with states of
stress which satisfy equilibrium and which do not violate the yield
condition, For convenience the maximum shearing stress criterion will
be assumed so that the maximum shear stress may not exceed 00/2 where
Op 1s the yield point in tension and ir compression. Any such egquilibrium
states of stress correspond to loads which are safe or at most at the
limit load.

Figs, 1 and 2 show problems which are almost but not quite
equivalent, a cantilever beam under snd load and a simple beam under
central loadings The equations of equilibrium to be satisfied are, in

the usual notation,

3o oT

.——xq._—&’.‘:O {l]
ox oy

ot

T %% [2]
ox oF
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If in Equation {2] Gy is taken as identically zero, is seen to be
Xy

independent of x, Ther. from Equation [1] , ovserving that ¢, 1is zero
at x=0
&
O, ==X "’5;‘?: [3]

The usual elastic zolution with linearly varying Ox and
parabolic Toy? Fig. 3a, satisfies equilibrium and will not violate yield
anywhere if the waximum Yending stress does not exceed 0y and the shear
stress at the neutral axis is no more than 30/2. Calling the maximum

moment M = PL and the shear V = P, the lower bound result is
2
M< o obh /6
(k]

Vs ogbh/3

To obtain an interaction plot, designate the known limit moment for moment

alone as MO and the limit shear for shsar alone as VO

2
M, = ogbh /h

oy [5]
‘.'O =5 bh
These valuzs arc obtained respoctively by o 0 in tension below the neutral
axis and 00 in compression above and by a uniformly distributed shear
stress 0’0/2.

The eiastic solution then gives the lower bound iuvr iction plot

shown as a square on Fig, '3

M_2 v 2
?'20*3’ 1:'05‘3

Although most of the prints arc far toc low (too close to the origin) the

Coutract DA~19-020-0RD-~3172/7
Project No, TB2-00U1 (1086)




2/3, 2/3 point alone could be quite useful, Two other points which are
known are 0,1 and 1,0. As a yield or interaction curve must be convex
(7) any line joining two lower bound poin-s must be a lower bounde Therefore
211 points lying inside the two inclined dashed straight lines of Fige kL give
pernissible combinations of V and M.

The lower bound can be improved Ly taking a more elaborate
distribution of normal znd shearing stress than in Fig. 3o to satisfy

the limiting maximum shear condifion

2 2 P p
+ ! =
o‘x Hy o (o] fo]

c

over the entire critical cross-section, Substituting the value of o

at x =1 from Equation [ 3] gives the differential equation:

[ ar, | 2 2
\.1.-d-y§) the =0 [7]

The solution for positive y is

~'_J_§= h _ 2y
sin = (1 )
{8}
— = — ‘2
—cosL(l —X)

and is wvalid for %5 -;—l as illustrated in Figs, 3b,ce For larger values
of -}% the nomal stress distribution ssparates into two 1/L cycle
loops, as shown in Fig. 3d, and the shearing stress is constant at 00/2
in the central cegion D,

Integration of [8] leads to

Contract 14=~19-020~0RD-3172/7
Project No. TR2-0001 (1086)
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B ol (12 cos By
= _ M h 4 E
: 0
; z for l‘1- -T-{n or ..V- -g- .
= L3 2 7S5
f 0
v 2
. For vai n
yo_2 D,mn_ 93
: VO-‘[1-+H (5 1))
[10]
Mk D T
i LA

The composite result i3 plotted on Fig, L and should be a very good lower
bound indeed because equili“wium and yield are satisfied in a reasonable
manner, A mocdification of the linear distribution of bending stress ana
parabolic distribution of shear along similar lines to Figs, 3¢ and 3d
would give a fairly good lower bound,

An implicit assumpbion has ceen made, however, that the distribution
of shearing stress on the cross-section x = 0 can be whatever is called
for by the lower bound solution, In a sense, therefore, the lower bounds

3 for Fige 3a and for Figs. 3b, ¢, d, do not apply to exactly the same
probleme, There is no simple way of resolving this difficulty. St. Venant'!s
principle camnot be appealcd to for short beams whether elastic or plastic

and does not generally have as much meaning in the plastic ranges

A local Criterion oi Limit Loading

It is customaiy in the derivation of the clastic momentecurvature
relation for beams in bending to analyze a wery short length of beam between

Contract DA=19=-020-~0RD-3172/7
Project No. TB2-0001 (1086)
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two neighboring cross-sections. Shear, if included at all, is added by
suprosing constancy along the length of the beams Free end or support
conditions are satisfied in the same nominal manner as in Fige, 3, In
eifect, therefore, the assumption is made for general loading that each
element of the beam behaves independently and exerts no restraint upon
its neighbor.

The same assumption of independent action in the plastic range
has much less justification as will be seen, It will, however, lead to
interesting interaction relations between shear and moment, Suppose, two
neighboring cross-sections are rotated and transversely displaced with
respect to each other as in Fig, 5 or in some more complicated pattern as
in Fig. 8, Transverse strain increments €, €, accompanying bhe
longitudinal strain increment e, are assum;d unimpeded, Quite a bit of
information can then be deduced about the state of stress and of strain
increment at each point in the plastically deforming body,.

It has been ecstablished within the framework of small displacement
theory that, at the limit load, the stresses are constant and the deforma-
tion is purely plastic (6)e Consider a small element of the beam which
is stretched plastically with strain increment €4 and sheared plastically
with increment Ty? Fig. 62, As in the previous scction, the normal stress
Oy will be taken as zero or negligible. The Mohr's circle for stress is
as shown in Fig, 6b, Assumption of thc maximum shearing stress criterion
of yielding then requires that all shearing be in the Xy plénc, e, =0,

As a consequence of the incompressibility in the plastic range of a material
obeying the maximum shear rule the plastic and, therefore, total strain

increments must satisfy
e_+€e_=0 or €_=«¢ {11}

Contract DA=19-C20~0RD-~3172/7
Project No, TB2-0001 (1086)




The Hohr'!s circle for strain ir -rement is thus centered at
the origin, Fige. 6ce As the principal dircctions of stress and of strain

inecrement coincide,

Y 2t
tan 20 = 5% = —2L [12]
2€x oy

°0
o, = .
1+ (Y_ﬂ
st
[13]
05/2
T)qr = 5
’ 2 2
( ..f.’.‘) + 1
Vo
at any point in the plastically deforming section,.
The assumed deformation of Fig, 5 in analytical fom is ny =%,
a constant over the depth of the beam, and ¢ = %y- € =1ie where e 1is

the maximum strain increment at the extreme fiber y = h/2 or 7n =1,

Integrating expressions [13] to obtain moment and shear leads to

"+l 2
N dn H : \2
M =M, J or T%I-‘: 1+ (l) -(%‘5) sinhl?_e.
| \-é_g
+1
d'q/2 v ¥ ) -1 o¢ [lh]
V=Y O == = == sinh —
0 V0 2¢€ Y

Fige 7 gives the interaction curve of M/MO vse V/V_,
The question which arises immediately is whether the curve

represents actual limiting values, upper bounds or lower bounds, If the

Contract DA=19-020-ORD-3172/7
Project No. TB2-0001 (1086)
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length Ax of the beam were indeed free at its end cross-sections to
carry V and M as it liked, the result would be an upper bounds. A
deformation pattem was assumed and the answer is the same as would be
found by following the upper bound procedure of equating the work done
by M and V to the energy dissipation (6)(8). Stress or equilibrium
conditions are not satisfied because Txy isnot zero at y = i-’n/2,
except for Y =0,

A plastic deformation pattern of a quite different type can be

i taken as in Fige 8 in which the outcr regions of the beam stretch or contract

without shearing and the immer portion D shears and changes length. An
interaction curve can then be obtained for each value of D/h, Fige 7. The
lowest values will be found as ¥ /e becomes indefinitely large. At this
stage the inner region D is effectively under plastic shear alone and

the shear stress will be 00/ 2

o}
[¢]
V=-§—bD
12 D2
bh _ b
M:OOT O'OT
or
* M v 2
I T —) {151
My (Vo

which is appreciably below the local criterion corresponding to Fige 5 (see
Fige T)s

Stresses corresponding to this deformation pattern are admissible,
the surfaces y = :h/2 are free of stress, Does this mean that one of
the individual interaction curves or their lower limit is the true interac-
tion curve? The answer must be no because [15] is in fact below the

lower bounds, Figse. 3,4s The confusion arises because of the attempt to

Gontract DA-19-020~0RD-3172/ 7
Project No. TB2-0001 (1086)
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find a2 local criterion, Neither the deformation pattern of Fige 5 nor
of Fige 8 will ordinarily be permissible because of the remaining portions
of the beam, Transverse strains required by Fig. 5 will be restrained by
neighboring elastic (or rigid) regirns as will even more the peculiar
distortions of Fig, 8. If the upper bound procedure of limit analysis
is followed, il is necessary to include the energy dissipated by the mis-
matching of the length Ax and the undeforming remainder of the beam,
Fige 94 Such dissipation terms are finite and independent of Ax o They
predominate, therefore, as AX approaches zero,

In the elastic regime, such mismatch or its equivalent is of
second order with V constant, The curvature varies linearly alcng the
beam and there is a gradual transition from the section of maximum mo-c  t
to the section of zerc moment, For elastic theory to have any validity,
the length of the beam must t2 several times the depth so that shear strains

ny resulting from the variation of €_ are rot significante At the

y
limit load, on the other hend, the deformation is entirely plastic and
is strongly localized, The transition between deforming and undeforming
material is abrupt. When bending predominates, a small length only is
plastice If in Fig. 9a the curvature of the plastic region is assumed
instead to vary smoothly along AX from zero to a maximum and back to
zero there will be no mis-match at the ends of the deforming portion.

For Ax small compared with h, however, the ¥ which is secondary

xy
in the elastic beam becomes primary and has large energy dissipation

associated with ite The mis-match trouble for pure bending is avoided
by the plastic hinge, Fig, 10, which spreads out over a distance equal
to the depth of the beam so that the criterion is in reality no longer

local,

Contract DA=19-020-0RD-3172/7
Project No, TB2-0001 (1086)
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In general, for both elastic and plastic members it is clear
that a local criterior. cannot apply in regions of rapidly changing cross-
sections FRoots of notches, abrupt changes in depth, and fixed ends 211
require morz elaborate theory for accurate analysis, The influence of the
complete geometry and load distribution on the limit load appears in more
detail in the further analiysis of cantilever and simple beams which

follows,

Cantilever and Simple Rectangular Beams — Upper Bounds

If a relation had been established between V/Vo and M/HO,
the cantilever problem of Fige 1 wovld be solveds The limit load P would

be detemined by the value of shear P and moment PL,

r. 2, A, _H
VO (.’2. o P o th
2 S
therefore
J _h ¥ [16]
Vo 2L 1‘10

and the ratio h/2L would give the proper point on the interaction curve,
Conversely, a solution of the cantilever under end load will help to
clarify the interaction relation,

Several solutions are available (2)-(5) including a fairly
comprehensive treatment of upper bounds by A. P. Green (L). When the
beam is very long, an ordinary plastic hinge may be assumed. Some of
the confusion in the detailed analysis of results is appcrent from Fige
1la, Although the hinge is of the standard type, its center is h/2
from the fixed ends The support is assumed capable of applying stregses
wh:‘!.ch keep -an elastic triangular core adjacent to the fixed end and so

Contract DA-19-020-0PD-3172/7
Project No. TB2-0001 (1086)
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strengthen the beam, When the beam is very short, Green ().} and Onat and
Shield (3) propose the circular arc of sliding as in Fig, 11b. The kinematic
picture proposed by Leth (5) for an I-beam is appropriate for the short
rectangular beam, Fig, llc. Again, as evidenced by the different points
of view expressed in (3) (4) and (5) the length of the beam becomes question=-
able because of the restraint by the fixed end.

A discussion of the simple beam centrally loaded, Fig. 2, does
not resolve the inherent and important problem associated with a fixed end
or any abrupt change in section. It does, however, simplify the analysis
of the interaction problem. In particular, if the central hinge kinematic
picture is assumed, Figs 12a. equating work done by the forces P to the

energy dissipated 5n plastic deformation gives the upper bound result (6)

PL < X, or <, (17

This answer cannot be said to be unexpected but it is not obtained for the
cantilever, Fig, 1la,

Assuming a circular slip surface for very short beams, Fig. 12b,
equating the work done by the external load to the intermal dissipation

gives as an upper bound:

h A h

c
0
PA = 5~ b 5= 2V -

2 2 sinV L+§ctn‘l/ 2 siny
<

(18]

The angle V should be chosen to minimize P because the least upper
bound is desireds The result of Onat and Shield (3) is then found (V=P):

=2 ctn ¥ -1 [19)
0

For very short beams and consequently small M/MO, series expansion

Contract DA-19-020-0RD-3172/7
Project No, TB2-0001 (1089)
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leads to the upper bound on the interaction relation (M = PL) plotted on

Fig. Te
2
\J 3(M
e 2 ] - e {20
A 8 (Mo) ]

The discontinuous shear upper bound picture, Fig, 12c, gives

2
[
04 (h - D) A
PA :-Q—-f'bDL'O-GOb-—T——--I-:
or
PL 4 2L D D 2
. — T e - - o 1
—— =1 = h*(l h) [21]
c 0
0 [,

Minimizing the upper bound by taking the derivative with respect to D/h

an< equating to zero

1l- or D+L=nh [22]

il
=

Substitution of [22] and {[16] in [21] results in the upper bound

interaction relation

V/
=l TI—{]_-

~( ) [23]

o=

M
o

valid for L/h <1l or M/MO < 2(V/VO) or V/VO >1/2, Hote that in
Equation [23] first order changes in V/V0 at V/VO = 1 correspond
to first order changes in /M., As shown in Fig. 7, the upper bound
[23] is a much better answer than [20] for small M/Mgy.

Extension of the simple beam to the left and to the right of the
lines of action of the forces P as in Fig, 13 provides an excellent
illustration of the non-local character of the interaction relation
calculation. There will be no change in the upper bound computed from a
hinge picture like Fige. 122 or a circular arc of sliding as Fig. 12b,
However, comparing Fige 12¢ and Fig, 13, it can easily be seen that

Contract DA-19-020-0RD-3172/7
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Equation [21] does not contain a complete expression for the dissipated
energy for Fig, 13. The (1 - D/h)2 term must be doubled because bending
occurs ot the loads P as well as at the center of the beam, Here again is
the mis-match trouble discussed earlier, Fig. 9b, and the reason Fig, 8 leads
to a result below the lower bounds of Fig, 3.

Returning then to a modified Equation [21] and minimizing the

energy dissipated,

D+-]-:-‘=h [2}4]
. 2
and for .-Ii.<1 or .If..<h.\l.
2h ~ M. -V
0 0
T AY
Lol (e 2
0 0 0 }

is an upper bound on the interaction relation, Fig. 7.

Comparisons and Comments

Fig, 1l compares several of the results obtained. It should be
kept in mind that if a unique interaction curve existed it would be convex
(7)s Although the local criterion is not necessarily either an upper or
2 lower bcund and the lower bound corresponds to shear stress distributions
somewhat different from those of the upper bounds, it seems reasonable to

take

L

M v
7 _m%[l-(%)

5 ] [26]

or an expression close to [26] as a working hypothesis. Such an approxi-
mation which nearly coincides with a lower bound and is not ‘oo far from
possible upper bounds would seem satisfactory for practical and theoretical

Contract DA-19-020-0RD-3172/7
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use. Polygonal or other approximations to the curve may well be more
useful in particular problems (8)(9).

As V/Vy will rarely exceed 1/2, in most praetical problems
the effect of shear may be ignored completely. As the purpose of this
paper is to elucidate the nature of the shear-moment interaction and not
to solve problems, none will be solved, One of the main points is that the
interaction is not a local affair but depends upon the loading and geometry
of the entire beam, Nevertheless when all possible loadings are considered
so that appreciable lengths of beam are at or close to yield, the local
criterion of Fige 5 may be close to a useful limit loading for large
momentes Complete end fixity as in the cantilever of Fig. 11 or reinforce-
ment of the central region of the simple beam will, of course, raise the
limit loads still Iurther above those discussed here in detail, All things
considered, it does appear that the concept of an interaction curve has
enough value tc warrant the selection of an approximation such as Eguation

[26] or for simplicity

L
M _ /v)
1=+ [27]
My &VO .

Contract DA-19~020-ORD-3172/7
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